Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy.
نویسندگان
چکیده
OBJECTIVES We sought to explore the relationship between a Tcap gene (TCAP) abnormality and cardiomyopathy. BACKGROUND Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) cause severe heart failure and sudden death. Recent genetic investigations have revealed that mutations of genes encoding Z-disc components, including titin and muscle LIM protein (MLP), are the primary cause of both HCM and DCM. The Z-disc plays a role in establishing the mechanical coupling of sarcomeric contraction and stretching, with the titin/Tcap/MLP complex serving as a mechanical stretch sensor. Tcap interacts with the calsarcin, which tethers the calcineurin to the Z-disc. METHODS The TCAP was analyzed in 346 patients with HCM (236 familial and 110 sporadic cases) and 136 patients with DCM (34 familial and 102 sporadic cases). Two different in vitro qualitative assays-yeast two-hybrid and glutathion S-transferase pull-down competition-were performed in order to investigate functional changes in Tcap's interaction with MLP, titin, and calsarcin-1 caused by the identified mutations and a reported DCM-associated mutation, R87Q. RESULTS Two TCAP mutations, T137I and R153H, were found in patients with HCM, and another TCAP mutation, E132Q, was identified in a patient with DCM. It was demonstrated by the qualitative assays that the HCM-associated mutations augment the ability of Tcap to interact with titin and calsarcin-1, whereas the DCM-associated mutations impair the interaction of Tcap with MLP, titin, and calsarcin-1. CONCLUSIONS These observations suggest that the difference in clinical phenotype (HCM or DCM) may be correlated with the property of altered binding among the Z-disc components.
منابع مشابه
Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle LIM protein, and telethonin.
BACKGROUND TTN-encoded titin, CSRP3-encoded muscle LIM protein, and TCAP-encoded telethonin are Z-disc proteins essential for the structural organization of the cardiac sarcomere and the cardiomyocyte's stretch sensor. All three genes have been established as cardiomyopathy-associated genes for both dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). Here, we sought to character...
متن کاملApical Hypertrophic Cardiomyopathy in a Case with Chest Pain and Family History of Sudden Cardiac Death: A Case Report
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disease, which is caused by a multitude of mutations in genes encoding proteins of the cardiac sarcomere (1). Apical hypertrophic cardiomyopathy (AHCM) is an uncommon type of HCM. The sudden cardiac death is less likely to occur in the patients inflicted with AHCM (2). Herein, we presented the case of a 29-year-old man ...
متن کاملInvestigation of Polymorphisms in Non-Coding Region of Human Mitochondrial DNA in 31 Iranian Hypertrophic Cardiomyopathy (HCM) Patients
The D-loop region is a hot spot for mitochondrial DNA (mtDNA) alterations, containing two hypervariable segments, HVS-I and HVS-II. In order to identify polymorphic sites and potential genetic background accounting for Hypertrophic CardioMyopathy (HCM) disease, the complete non-coding region of mtDNA from 31 unrelated HCM patients and 45 normal controls were sequenced. The sequences were aligne...
متن کاملComparison between Brain Natriuretic Peptide and Calcitonin Gene Related Peptide in Children with Dilated Cardiomyopathy
Background: Dilated cardiomyopathy (DCM) is revealed with the left ventricular dilatation and systolic dysfunction. This study was performed to determine the level of Calcitonin Gene Related Peptide (CGRP) and Brain Natriuretic Peptide (BNP) in children with dilated cardiomyopathy and controls and comparison of these two biomarkers in patients. Materials and Methods: This case-control study was...
متن کاملCardiomyopathy in Childhood: Histopathological and Genetic Features
Primary heart muscle disease is a cause of significant morbidity and mortality in childhood. The current WHO classification of cardiomyopathy is based on a combination of clinical features, aetiology and pathology. It is in need of revision because of accumulating genetic information concerning the pathogenesis of cardiomyopathy. It is becoming increasingly obvious that most of the primary hear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American College of Cardiology
دوره 44 11 شماره
صفحات -
تاریخ انتشار 2004